x^2+4x-135=0

Simple and best practice solution for x^2+4x-135=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+4x-135=0 equation:



x^2+4x-135=0
a = 1; b = 4; c = -135;
Δ = b2-4ac
Δ = 42-4·1·(-135)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{139}}{2*1}=\frac{-4-2\sqrt{139}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{139}}{2*1}=\frac{-4+2\sqrt{139}}{2} $

See similar equations:

| 3x^2+12x=405 | | x4+1/x4=727 | | (x+3)=15x | | 2x=-116 | | 4x+1/5x=8 | | C=20(7×c) | | x+8+58=90 | | A(n)=–5•3n– | | 0=7(t-3)+6 | | -6=-13a | | x²-30x-150=0 | | n+(-14)=0 | | 3p÷5-6=5 | | x^2=-8+9 | | x^2-6x+41=0 | | -6x^2-11x-3=0 | | ⅔t-11=64-4⅓t | | -3v^2+11v-8=0 | | k2-4k3-45=0 | | -6u^2-5u+1=0 | | 5u^2+41u=42=0 | | 3(x+4)-(2x+7)=0 | | –1/2x=4 | | -4x-3=7+6x | | –5x-15=10+20x | | (8x-10)+(3x+90)=90 | | 8^(4x)=1/16 | | 5C=55/9x-32 | | (5/9)x(55-32)=C | | (5/9)x(F-32)=C | | |(x-6)(5x^2)=0| | | 5x-20x=-15x |

Equations solver categories